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ABSTRACT 

We introduce a method using fuzzy similarity 
(equivalence) and tolerance (compatibility) relations, that 
allows the “concentric” extension of searches based on 
the hierarchical co-occurrence of words and phrases. This 
is to solve the problem of automatic indexing and 
retrieval of documents where user queries may not 
include any words occuring in the documents that should 
be retrieved. Various methods will be proposed and 
illustrated, with the intention of real application in legal 
document collections. 
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1. Introduction 

Almost every document has some hierarchical structure 
with respect to the importance of the words or concepts 
occurring in it. It can be assumed that every document 
has a title which most likely contains relevant 
information concerning the contents. Most documents 
also have sub-titles, and some have a collection of 
keywords at the beginning of the text (as above in this 
paper). A number of approaches useful for automatic 
indexing of the context can be found in [l] and [2] .  For 
example, the frequency-keyword approach, where all of 
the informative words in the text are keywords. In this 
paper we will restrict the usage of the term ‘keyword’ to 
words occurring on higher logical hierarchical levels. 
Hence to avoid confusion we will use the expression 
frequency-word approach. Also, we will use the word 
‘document’ to also mean ‘document segment’ or ‘text 
unit’. 

The basic idea of automatic indexing based on co- 
Occurrence is that words or phrases occurring frequently 
together in the same document or paragraph are connected 
in their meaning in some way. Certainly this will not 
mean that such words are necessarily synonyms or have 
related meanings, as antonyms may occur together just 
as often as do synonyms, not considering more 
sophisticated semantic connections. 

The simplest idea is to check words using the frequency- 
word approach, and instead of linking documents with 
words, establishing a matrix or co-occurrence graph 
indicating the mutual co-occurence of pairs of words and 
phrases. A finer model will be introduced where the 
degree of co-occurrence is described by a membership 
degree in the sense of fuzzy logic. 

A more sophisticated approach is the hierarchical 
approach. In this, the presumed semantic structure of the 
documents is taken into consideration by assuming 
(reasonably) that the title is descriptive of the contents of 
the paper. Thus, the words occurring in the title will be 
very important for the whole of the contents of the 
document, except obviously unimportant words like 
articles, or connectives. 

Similarly, the sub-title of each section, sub-section, etc. 
of the document is assumed to be descriptive of the 
contents of the relevant sub-unit. In this sense, there is a 
hierarchical semantic structure in the document that 
contains at least two levels (1: title and eventual 
keywords, 2: text), but possibly more than two (e.g. 1: 

2950 
0-7803-4778-1 198 $10.00 0 1998 IEEE 



title and keywords, 2: sub-titles, 3: texts) that can be 
represented by a tree graph as in Figure 1. In the case of 
sub-sub-titles, etc., the number of levels increases in a 
similar way.) 

Figure 2. Document hierarchical structure. 

If more than two (keyword and general word) levels are 
considered in the model, it will be necessary to introduce 
additional terminology: "keywords" for the words 
occurring in the title and the "Keywords" section (and 
maybe in the introductory and conclusion part of the 
whole document), "sub-keywords" for the terms 
occurring in the sub-titles (and corresponding 
introductions and conclusions), etc., and "words" for the 
lowest level comprising the contents of the whole 
document. Let us denote the set of keywords for a given 
collection of documents D= {D,,D,, ..., D,,} by K ( D ) ,  
and if there is a further hierarchy of the keyword levels, 
by K, ( D ) ,  K,  ( D )  , etc., and the set of all significant 
words by W .  Then it is advisable to define these sets so 
that K, ( D ) c K ,  ( D ) c  ... c K ,  ( 0 ) ~  W where m denotes the 
number of hierarchical levels taken into consideration ( 
m t 1). 

The main idea is the following. If a certain word or 
phrase frequently occurs together with another in 
documents, the two may have some connected meaning 
or significance. If a word or phrase { w i }  occurs 
frequently in a document, and the keywords { W,} (in the 
title, etc.) are certain other words, the document content 
words would belong to the class of related concepts of 
the keywords. The more frequent the co-occurrence the 
more it is likely that any user querying for any {W,}  
will be interested in documents containing { w i }  in the 
text - even if the queried word does not appear in the title 
of these latter documents, and maybe not even in the 

text. Noting our concept of "hierarchical co-occurrence," 
we observe that it is likely that {W,}c {wi}, however, 
even { W j } n  {w, }= 0 cannot be excluded! 

As an example let us take somebody who is interested in 
articles on Soft Computing or Computational 
Intelligence. In many overview articles on these subjects, 
the term Fuzzy Logic will occur frequently. However, it 
is very likely that in an article on Fuzzy Logic none of 
the terms Soft Computing or Computational Intelligence 
will occur. In this case it is quite clear that the 
connection between SC and FL is hierarchical in the 
meaning, and the structure of many documents will 
follow this, as shown in Fig. 2. 

I sc 
Soft Computing 

FL 0 %* 
NN 

Conceptual relation Hierarchic tree 

Figure 3. 

The left side of the diagram expresses that Fuzzy Logic 
is a special branch of Soft Computing, and so, it is a 
subset of the topic marked by the keyword SC. The right 
hand side shows that articles on SC include those related 
to Fuzzy Logic, Neural Networks, Genetic Algorithms. 
In the next section we introduce a model that is suitable 
for finding documents not containing the words "Soft 
Computing" but dealing e.g. with Fuzzy Logic, by 
querying for "Soft Computing", and not asking for 
"Fuzzy Logic" at all. 

2. Fuzzy relations 

In this section we provide a short overview of fuzzy 
relations, particularly on a few important types of fuzzy 
and crisp relations that we will refer to in later sections. 
Further details on fuzzy relations can be found in [3]. 

A fuzzy set A is always defined in terms of a universe of 
discourse X = { x  } and a mapping p A  from this set to the 
unit interval [ 0,l ] :pA:X - [ 0,1], where pA ( x  ) is called 
the membership function of the fuzzy set A ,  and its 
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concrete values for any x=x,  are the membership grades 
of x, in A .  A fuzzy relation is a fuzzy set of the 
Cartesian product of two or more sets as the universe, so 
e.g. a binary fuzzy relation R is defined by the mapping 
p R : X x Y - [ O , l ]  w h e r e  X = { x } ,  Y = { y }  and 
consequently X x Y = { (x ,  y ) }. The special case when 
Y = X  is the binary relation over the Cartesian square of a 
given universe. 

Binary fuzzy relations of X X X  are categorized according 
to their properties in a manner similar to ordinary (crisp) 
relations. The crisp equivalence relations (z ) as defined 
fulfil three properties: reflexivity (x = x is always true), 
symmetry ( x = y - y  z x ) ,  and transitivity ( 
x y A y  z - x = 2 ) .  The fuzzy analog of equivalence is 
called the similarity relation (=), and essentially the 
same three properties hold: reflexivity (p. ( X J  )= 1), 
symmetry fi. (x ,y )=p. ( y , x ) ) ,  though transitivity has to 
be formulated in a somewhat different manner ( 
P .  ( s z ) ~ m i n { p .  ( x , y  ) , p . ( y , z ) ) ) .  

Compatibility relations are reflexive and symmetric, but 
not necessarily transitive, so they form a wider class than 
equivalence. The fuzzy analog is called the tolerance 
relation (= ), and it has the first two properties as above: 
reflexivity ( p . ( x , x ) = l )  and symmetry ( 

p= b , Y  ) = P m  ( Y J  1). 

A convenient way to represent binary fuzzy relations of 
finite element universes is the use of matrices, where 
columns and rows correspond to the elements of the 
component universes X and Y and elements of the matrix 
are the membership degrees themselves, and can be 
visualised by bipartite graphs. 

Similarly, relations on X x X  can be described with 
quadratic matrices, where for example, the similarity and 
tolerance relations have only 1s in the diagonals, and are 
symmetric. The graphical visualisation of such a matrix 
is shown in Fig. 3. 

Selecting an arbitrary a E [ 0,1] in such a fuzzy graph, 
the a-cut of the graph contains only those edges where 
the membership degree is at least a .  If X ,  is a node of 
the graph G representing a similarity relation, the set of 
all nodes E ( X , ) = { X , E G I  p ( X P X , ) t  a} represents the 
equivalence (similarity) class of X , .  From the properties 
of the similarity relation it is clear that 
X j X k ~ E ( X , ) * p ( X j X k ) t a  and also that X , E E ( X , ) .  
Consequently, similarity relations generate a-partitions 
of the graph. 

Tolerance relations behave differently, as tolerance is not 
transitive. While every node is necessarily an element of 
its own tolerance cluster: X ,  ET ( X , ) ,  and other nodes are 
not necessarily connected by edges to each other with at 
least the same degree of membership as the defining node 
is to other nodes in the class. The a-cuts of tolerance 
classes of the nodes will usually not be complete graphs 
themselves. On the other hand, if the maximal sub-graph 
C , ( X , )  of T ( X , )  containing X ,  itself is selected, where 
every node has at least a membership degree (a-clique), 
the set of maximal sub-graphs will form a cover of G, so 
that U C , ( X , ) = G ,  usually i # j * C a ( X , ) n C a ( X j )  #er .  

The graphs will thus not usually be empty, as some 
nodes of G belong to two or more compatibility classes 
simultaneously. An example is shown in Table 1 and 
Fig. 4. 

I 

x ,  x2 x3 x4 x ,  x ,  
X i  1.0 0 . 7  0.2 0.5 0.3 0 .8  
X ,  0 . 7  1.0 0.0 0.6 0.1 0 . 9  
x3 0.2 0.0 1.0 0 . 7  0.2 0 . 7  
X ,  0.5 0.6 0.7  1.0 0 .8  0 .8  
X ,  0.3 0.1 0.2 0 . 8  1.0 0 .9  
X, 0 . 8  0.9 0.7  0 .8  0 . 9  1.0 

Table 1. Membership values p ( X p X , )  

- U  
Figure 4. 

The relation represented by G is not a similarity relation 
as it is not transitive. Let us take for example 
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{ X , , X , , X ,  } . here P ( X , , X ,  ) 2 min {P ( X , , X ,  ) ,P  ( X , , X ,  ) 1, 
that is, min {p ( X , , X ,  ),p ( X , , X ,  )}=min {0.7,0. 8 } but 
p ( X , , X ,  )=0.2 which is less than 0.7, contradicting 
the transitive property of similiarity relations. On the 
other hand, all of the elements in the diagonal of the 
matrix are all 1-s, hence the relation is reflexive, and the 
matrix is symmetrical (the relation is symmetrical 
itself), consequently G represents a tolerance relation. 

Let us choose a= 0.7 and take the a-cut of G. The edges 
are indicated in Table 1 by bold numbers and italics (for 
the diagonal). In Fig. 4 all edges above the boundary are 
indicated with their respective degrees of membership, 
while the remaining edges are shown without degrees. 

X6 

x3 
Figure 5. 

Let us now construct the compatibility classes of the 
relation. (Note that searching for compatibility classes is 
an NP-complete task that needs a very long time for 
larger graphs [4]. There exist some faster approximate 
algorithms, however here we just assume that 
compatibility classes have been found already. This can 
be done since establishing the compatibility classes has 

X ,  
Figure 6. Set of compatibility classes 

to be done once only, before the information retrieval 
service is started, in order to have a "logical map" of the 

knowledge in the data base in question.) The maximal 
compatibility classes in G, (a=0.7) are 
c,= { c$={x,,x,,x6 }> c l =  {x,>x4,x6 }> c l =  { x Q x , 7 x 6  } }. 

3. Fuzzy relations by co-occurence 
and importance measures 

In this section we introduce a way of establishing 
complex relations based on the absolute and relative 
simple and weighted word counts in documents, and parts 
of documents. 
The basic hypothesis is that the frequency of occurrence 
of significant words in a certain document is connected 
with the importance of that word in the document. 
Another additional assumption will be that pairs of 
words occurring frequently in the same document or the 
same part of a document are connected in their meaning 
(they might be synonymous, antonymous, or otherwise 
related). 

In [l], [2] attempts have been made to find ways to index 
documents automatically, based on word frequencies is 
the main. In [5] the concept of fuzzy  importance degree 
(also referred to as "measure") was introduced. If the 
[O,l]-normalized frequency of word w, in the 
titlekeyword section of document 0, is denoted by Ti 
(keyword frequency, or title-keyword frequency), the 
normalized frequency of the same in the 
introductiodconclusion parts of the document is Lf 
(location-keyword frequency), and the frequency in 
connection with cue words is C,, finally, if these three 
factors are weighted by A,,Az,A, (where A,+A2+A3= l ) ,  
the normalized fuzzy importance degree is calculated by 
the convex combination of the three frequencies: 
F , ~ =  al T , ~ +  azcij+ a,+ 1 . 

Obviously, Fij is a fuzzy membership degree that 
expresses the connection of w, and Dl (p (weDl)).  If the 
hierarchical structure of the document is taken into 
consideration as illustrated in Fig. 1, fuzzy importance 
degrees of level one (being Fi, itself), and levels two and 
so on, can be introduced (e.g. 'Ti= Alkqi+ A:c",.+ A.)tL:j, 
where the right superscripts indicate that level 2 titles 
such as sub-titles, and level 2 introductions and 
conclusions, and cue words located in some significant 
parts of the sub-sections were calculated; and the left 
superscripts refers to the index of the sub-document, i.e. 
meaning "part k" in this case.) 
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Another way of expressing the importance of a word in 
the document is just calculating its normalized frequency 
in the whole text (Kj=v ( wpDI) )  which we will call the 
fuzzy occurrence degree. As a matter of course, the 
frequency within any sub-section, sub-sub-section, etc. 
can be calculated, and so the frequencies ‘e, etc. can be 
determined. From now on it will be assumed that both 
fuzzy importance degrees: the normalized keyword 
frequencies Fij; and the normalized word frequencies of 
(overall) occurrence K,, obtained by automatic analysis of 
the relevant document and its sub-sections are available. 

If the importance degree of each significant word in each 
document in a full or sample collection is available, the 
fuzzy eo-occurrence degrees can be calculated. By co- 
occurrence the similarity or logical equivalence of the 
importance degrees or (normalized) relative frequencies 
will be understood. Fuzzy logical equivalence can be 
defined in various ways (all of these being extensions of 
the Boolean logical equivalence operation 
A B e  ( A  AB)V(  TA A T B ) ) .  Here, two straightforward 
definitions of fuzzy equivalence will be used. The first is 
based on the Zadeh-style fuzzy operators 
pcA (x )=l -pA(x 1, pm (x )=min {pA (x ) , pB(x  I} and 
pA,,(x)=max{pA(x),pB(x)} where 5 ,  and $’ are for 
fuzzy negation, conjunction and disjunction respectively. 

The second definition for fuzzy equivalence is based on 
the algebraic fuzzy operations: pAm (x )= pA (x )pB (x ) , and 

identical with the above). 
P A ~ B  (X ) = P A  (X ) + P B  (X ) -PA (X ) P B  (X ) (negation being 

(Henceforth, complicated notation will be simplified 
such that the fuzzy logical operation will not be 
differentiated by the wave above the operator, as it is 
usually clear from the context if it is a fuzzy operation, 
further, membership functions will be usually denoted 
just by the symbol of the fuzzy set or statement, so e.g. 
the algebraic fuzzy disjunction being written simply as 
A V B = A  + B - A B  . For more details on fuzzy operators 
and operations see [3] . )  

When introducing hierarchical eo-occurrence the 
following is meant: first the hierarchical structure and the 
document indexing/analysis structure in that particular 

model are determined. (Determine the number of levels in 
the document. Determine the weights A,. For each 
hierarchical level and within it, for each section, sub- 
section, etc. determine the text unit in question, and if 
necessary, its special location parts, like the 
introduction, etc.) Then for each text unit determine the 
fuzzy importance degree and thefizzy occurrence degree 
as well. Thefuzzy equivalence of these two degrees will 
result in the hierarchicalfuzzy eo-occurrence degree of the 
given document, section, etc. Its formal definition is as 
follows: 

H, , *F = K c  for the main text, 
19 ‘11 z’ 

for sub-section number k in level I ’I all for keyword Wi 

and word w, in document Dj. 
1 

2 

If a sample collection of documents is fixed for training 
the information retrieval system, the average degrees of 
hierarchical fuzzy co-occurrence can be calculated by 

i Hi,, 
H,I d 

n 
where n is the number of documents in the sample 
collection, and i stands now for the subscript of the 
keyword, j for that of the general text word in question. 
The average non-hierarchical co-occurrence degree can be 
calculated similarly. 

4. Hierarchical co-occurence queries 

By using the fuzzy importance and co-occurrence degrees, 
and the fuzzy relation classes discussed in the previous 
sections, we establish a complex hierarchical relational 
map of a sample document collection. After deciding the 
levels and weighting factors and doing the keyword and 
word counts in the collection, these frequencies are 
normalized for the unit interval [0,1]. Then the 
normalized indices can be interpreted as fuzzy 
membership degrees and used directly in the formulae 
given earlier. As a result, the following relations and 
corresponding graphs will be established: 

Keyword co-occurences relatiodgraph G, (established 
from the normalized co-occurrences NE); 
Word CO-occ. G, (from normalized CO-occ. AIc,); 
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Fuzzy importance degree (keyword-document occ.) GWD 
(from the fuzzy importance degrees 
Word-document occ. G, (from normalized occ. Ki,); 
Hierarchical co-occ. G ,  (from hier. Co-occ. Ht,); and 
Further hierarchical co-occ. relations - multilevel 
models. 

Fe,); 

Search by keyword and hierarchical co-occurence: 

Determine the set of words that match the keyword. All 
documents that match any of the matching words will be 
retrieved: A=G,,, (Gml ( Wi)). The values of z, and z, 

could be different thresholds determining the level of 
matching. The method is illustrated in Fig. 6. 

Figure 7. 

In the figure the query keyword is indicated by a dark 
node. All matching words/documents (thick line nodes in 
w/D) are connected to it by solid lines, while a few 
words/documents having lesser membership value than 
the thresholds in the relation are shown by dashed 
connections. This latter in D is not considered to be 
matching and is left out of the class of retrieved 
documents A (the thick line nodes in D). 

Search by keyword compatibility/equivalence relations 
and hierarchical co-occurrence 

Determine the compatibility class in Wand all matching 
words in w.  All documents matching the image of the 
compatibility class of the original keyword will be 
retrieved: A = G,,, ( G,,, ( Cw, ( Wi))). 

Figure 8. 

The diagram notation is the same as before. Clearly a 
larger number of documents can be retrieved, which will 
increase the recall and reduce the precision. The setting of 
the respective z values will be significant in determining 
the appropriate tradeoff. 
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